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ANALYSIS OF INEXACT TRUST-REGION SQP ALGORITHMS

MATTHIAS HEINKENSCHLOSS* AND LUiS N. VICENTE f

Abstract. In this paper we extend the design of a class of composite—step trust-region SQP methods and their global
convergence analysis to allow inexact problem information. The inexact problem information can result from iterative linear
systems solves within the trust—region SQP method or from approximations of first-order derivatives. Accuracy requirements
in our trust-region SQP methods are adjusted based on feasibility and optimality of the iterates. Our accuracy requirements
are stated in general terms, but we show how they can be enforced using information that is already available in matrix—free
implementations of SQP methods. In the absence of inexactness our global convergence theory is equal to that of Dennis,
El-Alem, Maciel (SIAM J. Optim., 7 (1997), pp. 177-207). If all iterates are feasible, i.e., if all iterates satisfy the equality
constraints, then our results are related to the known convergence analyses for trust-region methods with inexact gradient
information for unconstrained optimization.

Keywords. Nonlinear programming, trust-region methods, inexact linear systems solvers, Krylov subspace methods,
optimal control
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1. Introduction. In this paper we study a class of trust-region sequential quadratic program-
ming (SQP) algorithms for the solution of minimization problems with nonlinear equality con-
straints. Our aim is to extend the design of these algorithms and their convergence theory to allow
the use of inexact problem information that originates from inexact first—order derivative information
or from the use of inexact linearized constraint equation or adjoint equation solves.

The problems we are interested in are of the form

min  f(y,u),

1.1)

st. C(y,u) =0,
wherey € R™, v € R"™™, f: R" — IR,C : R" — IR™, m < n. Our theory assumes
that f andC are at least twice continuously differentiable. Variants of the algorithms, however,
require only first—order derivative information. Our research is motivated by discretized optimal
control problems [16, 18, 21], parameter identification problems and inverse problems [28, 31], and
design optimization [4, 24]. In these applicatiangepresents the discretized state variablesiand
represents the discretized controls, parameters, or design variables, respectively, and the nonlinear
constraint’(y, ) = 0 is the discretized state equation. For many of the above mentioned applica-
tions the solution of linear equations of the type

(1.2) Cyly,u)z=d or Cyly,u)'z=d,

wherey, v andd are given and wher€', (y,u) andC,(y, w) are the partial Jacobians with respect

to y andu, respectively, is costly and has to be accomplished by iterative methods. In optimal
control, parameter identification, or optimal design problems the equations (1.2) are related to the
linearized state equations and the adjoint equations, respectively, and it is often desirable to solve
such equations using application specific methods such as Krylov—subspace, multigrid, or domain
decomposition methods. Hence exact solutions of linear systems (1.2) are not available; only ap-
proximate solutions with a specified residual tolerance can be obtained.
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2 M. HEINKENSCHLOSS AND L. N. VICENTE

Composite step trust—region SQP methods are used successfully to solve large scale optimiza-
tion problems. However, existing convergence theories, which are nicely reviewed in [5], rely on
the exact solution of linear systems of the form (1.2). Most existing implementations of SQP meth-
ods, use dense or sparse linear algebra methods to accomplish the linear system solves. As we have
mentioned before this is not feasible for several of the applications we have in mind. Our main
motivation of this paper is the control of inexactness arising from iterative system solves (1.2) in
composite—step trust-region SQP methods. However, our assumptions on the inexactness are more
general and cover inexact first—order derivative information. The novel aspect of our work is the
ability to deal with inexact first—order derivative information or inexact linearized constraint equa-
tion solves. Of course, we also allow the inexact solution of trust-region subproblems, which is a
standard ingredient of trust—region convergence theories and implementations.

In the context of Newton methods for nonlinear equations and unconstrained optimization, the
control of inexactness is relatively well understood. See, e.g., [2, 7, 12, 13, 14, 25]. Generalizations
of the inexact Newton method concepts to the local convergence analysis of inexact SQP methods
can be found, e.g., in [8, 9, 15, 22, 26]. In [23] global convergence of line-search reduced SQP
methods is studied. The influence of inexact problem information on the global convergence of
trust-region SQP methods, however, is to our knowledge not yet studied. Our analysis and our
assumptions on inexactness are different from [23]. In particular, our bounds on the inexactness do
not rely on Lipschitz constants, derivative bounds, and other quantities that are difficult to obtain
in practice. Our bounds on the inexactness depend on quantities that are readily available in our
algorithms.

We give a global convergence analysis of a class of composite—step trust-region SQP algorithms
for (1.1), which are reviewed in [, 15.4] and [10§ 4]. In the absence of inexactness our global
convergence theory is that of [10]. If all iterates are feasible, i.e., if all iterates satigfy, ui) = 0,
then our results are related to the convergence analyses in [3, 5] for trust—region methods with inexact
function and gradient information for unconstrained optimization.

This paper is organized as follows. In section 2 we will consider the reduced problem
min f(y(u),u) obtained from (1.1) by eliminating the variablgsWe will briefly discuss the con-
vergence analyses in [3] and [, 8.4,10.6] for trust-region methods with inexact function or gra-
dient information for the reduced problem. This will reveal some useful problem information and it
will later motivate our assumptions on the inexactness for problem (1.1). Section 3 contains a brief
review of the composite—step trust-region SQP algorithms and of their global convergence analyses
given in [10]. Our inexact trust—region SQP algorithms and their global convergence analyses will
be described in section 4. Assumptions on the inexactness in section 4 are stated in a general way.
In section 5 we will discuss how they could be satisfied in an implementation. In the conclusions,
section 6, we point to some possible extensions.

We use the following notation. We often set= (y,u) and usez, andz, to represent the
subvectors ot € IR™ corresponding to thg andu components, respectively. The SQP iterates
are indexed byt and the symbol of a function with subscripts used to represent the value of that
function atz and, possibly). For instancef; = f(zr) = f(yx,ux). The vector and matrix
norms used are the norms, i.e.)| - || = || - ||2. Thel x [ identity matrix is denoted by;.

2. Trust-region methods for the black—box formulation with inexactness.Under the as-
sumptions of the implicit function theorem, the problem (1.1) can be locally reduced to an uncon-
strained problem in the variable Since the type of inaccuracies we are interested in for (1.1) relate
to function and gradient inaccuracies for the reduced problem, it is worthwhile to review existing
results on trust—region methods with inexact function and gradient evaluations for unconstrained
problems. To simplify this presentation, we impose conditions that ensure that (1.1) is equivalent to
an unconstrained problem. We suppose that for @l IR~ the constraint equatiofi(y,u) = 0
has a unique solutiop and thatC'\ (y, u) is invertible for all(y, ) with C(y,u) = 0. In this case
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ANALYSIS OF INEXACT TRUST-REGION SQP ALGORITHMS 3

the implicit function theorem guarantees the existence of a twice continuously differentiable func-
tion v — y(u) defined through the solution &f(y,u) = 0. Instead of (1.1) we can consider the
equivalent reduced problem

~

(2.1) min f(u) = f(y(u),w).

This problem is also called the black—box formulation of the optimization problem (1.1) because the
solution of C(y, u) = 0 is treated as a black—box in the optimization algorithms for (2.1). It can be
shown that

(22) Vf/\(u) = W(y7 U’)va(y7 u)|y:y(u) = W(y7 U’)Tvg(ya U, )\)ly:y(u)A:/\(u)7

where

2.3) W (g, 0) = ( ~Cy(y,u) ' Culy, u) )

Infm

and\(u) solvesCy (y(u),u)" X = =V, f(y(u),u). For details see, e.g., [11, 19].

Now, suppose that the nonlinear equatia@fi§y,u;) = 0 can not be solved exactly for
yr = y(ug), but that an approximatiof(uy) of yr = y(ux) is computed by applying an it-
erative method ta”(y,ux) = 0. In this case the function? and its gradient can not be eval-
uated exactly. Gradient computation also requires the solution of a linear system of the form
Cy(yr,ur)’z = =V, f(yx, ux); if such systems are solved iteratively, this will introduce another
source of inexactness in the gradient. How does one need to control the inexactness in function val-
ues and gradients in trust-region methods for (2.1)? The influence of inexact gradient information is
analyzed in [3], [5§ 8.4], [35] (for a detailed literature review see [5, p. 296]) and the influence of
inexact function evaluations is studied in §5.0.6]. We want to ensure that our inexactness assump-
tions for the trust—region method for (1.1) are compatible with the existing inexactness assumptions
for trust—region methods for (2.1) in the case that the SQP itéyate.;) satisfiesC (y;, ur) = 0.
Therefore we briefly review the theory in [ 8.4,10.6].

In a trust—region method for the solution of (2.1) one computes an approximate solution of

min A (s,) = ]?k + 950+ %sfﬁksu,
llsull <Ak

whereg}, is an approximation o7 f(uy) and Hy, replacesVQf(uk). The decision about the ac-
ceptance ofuy + (s.)r as the next iterate and about how to update the trust-region radius is
based on the ratio of actual decreased, = f(uk) - f(uk + (su)r) and predicted decrease
p/r\edk = mp(0) — M ((sy)r). Letny € (0,1) be the constant so that the trust—region radius is
reduced if and only ifa/r&ik/{re\dk < n2 and letn; € (0,7] be the constant so that the step is
rejected if and only ifa/r&:'lk/p/r&l,C <M.

In [5, § 8.4] it is shown that if the relative gradient error satisfies

~

(2.4) 19k — V)l /Ngell < €< (1—m2)/2,

then global convergence of the trust—region algorithm to stationary points can be guaranteed. This
accuracy requirement for the gradient approximation is rather weak.

Inexact evaluation ofinfluences the computation @Ee\dk. The influence of inexact function
evaluations is analyzed in [§,10.6]. It is sufficient that

—

(2.5) |f(§(uk)vuk) - f(y(uk)a uk)| < UUF@M
|f @k + (su)k)s wk + (Su)k) — fy(uk + (su)k), uk + (su)k)| < nopredy,
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4 M. HEINKENSCHLOSS AND L. N. VICENTE

wheren, < %771- In particular, these accuracy requirements guarantee that if the ratio of actual
and predicted decreases indicates acceptance of the step,ﬂ&jﬂﬂ&&ik >, whereaEe\dk is
computed with the inexact function values, then one still obtains a sufficient deq?eag& f(ukJr

(Sw)k) = (m — 27;0)p/r<§11,c in the exact function values. Note also that the accuracy requirement
for f(y(u), ur) depends on the trust-region st@p,), which is not known wherf (y(u ), ur) is
computed the first time. Thereforé(y(uy), ur) might have to be recomputedp’f&ik, becomes

too small to meet the required accuracy requirement. For more details $eH[5).

3. Trust—Region SQP Methods.In this section we describe the class of composite—step trust—
region algorithms assuming exatiandC derivative information and assuming exact solutions of
linear systems of the form (1.2). Our representation follows [10, 11]. This section is needed to
introduce some basic terminology and notation, as well as to describe later on what can go wrong if
f or C derivative information, or linear system (1.2) solutions are inexact.

3.1. The main components of our composite—step trust-region algorithmssiven a local
minimizer x,. = (y.,u.) for problem (1.1), there exists a Lagrange multipller such that the
gradientV/{(z., \.) of the Lagrangian function

0y, u,\) = fly,u) + \TC(y, u)

is zero. IfCy(z.) is assumed to be nonsingular, then the Lagrange multipliés determined by
Vyl(zs, A) = Vyf(zs) + Cy(zs)T A = 0, and the first-order necessary optimality conditions
can be written as

Vul(za, M) = W(z)TVf(x.) = 0,

(3.1) Vbl Mzy)) = Clas) = 0,
whereW (z..) is given by (2.3).

Given approximations, = (yx,ux) and A, for the solution(y., u.) and the corresponding
Lagrange multiplien,. of (1.1), SQP algorithms compute an (approximate) solution of the quadratic
programming (QP) problem

min  qr(s) = O(ap, M) + Vel(zr, \e)Ts + %STHks,

(3.2)
s.t. Cy(zk)sy + Culxk)sy + Clxg) =0,

where Hy, is a symmetric approximation to the Hessi&f ¢(zx, \r) of the Lagrangian at
(yk, uk, Ax) or the Hessian itself, and then generate a new iterate;, ux1) from this QP so-
lution and, possibly, the corresponding Lagrange multipligr;. To ensure global convergence, a
trust—region condition of the forrs|| < Ay is imposed. However, the linear constraints in (3.2)
and this trust-region constraint can be incompatible. To deal with the possibility of incompatible
constraints, composite—step trust—region algorithms, many of which are reviewed ib[8], [10,

§ 4], split the steps as a sum of two steps’ ands®. We assume thaf', (z) is invertible. In this
case the step decomposition takes the form

s sn st
s = Y _ Sn + St _ Yy + Yy )
Su 0 Su

3.1.1. The quasi—normal step towards feasibility.First, composite—step trust—region algo-
rithms compute a so—called quasi—normal stgpwhich is responsible to move towards feasibility.
Since we assume that, (z) is invertible, they—component 0§}, is an approximate solution of
min ||Cy(zx)sy + C(z)|,

(3.3)
st [lsn < Ay
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ANALYSIS OF INEXACT TRUST-REGION SQP ALGORITHMS 5

and theu—component of}, is given by(s? ), = 0. Subproblem (3.3) is not solved exactly. A rather
coarse solution is sufficient to guarantee basic global convergence. The quasi—normal component
is required to satisfy

(3.4) ICkI1 = Cy (@) ()1 + Okl = w1 ]| Cil| min{mz || Cll, Ar},
wherek; andks are positive constants independenkof
3.1.2. The tangential step towards optimality.In a second step, composite—step trust—region

algorithms compute a so—called tangential stepwhich is responsible to move towards optimality
but has to maintain linearized feasibility, i.e., has to be in the null-space of the linearized constraints.
The tangential step is an approximate solution of

min g (s} + st)
(3.5) st Cy(wg)sy, + Cu(zr)sy =0,

[sull < At
From the constraints in (3.5) we see that= Wy s,,, whereW}, is defined in (2.3). Therefore we
can write
T

(3.6) ar(sh + sY) = au(sh) + (Wi (Hesh + Valy)) su+ 2si W H Wy s,
and pose the problem (3.5) entirelydn:

PN . T
min  Gk(sy) Lo qr(sy) + (WkT(Hksz + Vmﬁk,)) Su + %(su)TWk,THka(su)
st |[su]l < Ag.

(3.7)

Reduced SQP algorithms do not approximate the HeS&i((zx, \x) but the reduced Hes-
sian WI'V2_¢(xx, \g)Wy. In this caseW,I H, W}, in (3.7) is replaced by the reduced Hessian
approximationﬁ[;c and the tern¥{, s, is approximated. The details of the latter approximation are
not important in our global analysis and we refer to, e.g., [1] for more details.

The tangential step does not need to solve (3.5) or (3.7) exactly. Itis sufficient that the tangential
components,, ) satisfies a fraction of Cauchy decrease condition associated with the trust-region
subproblem (3.7). In other word; ,, ). has to provide as much decrease in the quadfatie, ) as
the decrease achieved in the directioWgy, (0) = —W, (Hy s} + V,¢;) inside the trust region. It
can be proved that such a condition implies

(3:8) G(0) = G(su)n) = wallWF (Hs} + Vol | min {os | W (Hish + Vi)l wodi b,

wherek,, k5, andkg are positive constants independenkof

3.1.3. Measuring progress and evaluating the trial stepTo decide about acceptance of the
stepsy, = s}, + s}, we follow [10] and use the augmented Lagrangian merit function

L(z,\;p) = f(x) + \TC(x) + pC(z)T C(z) = l(x,\) + pC(x)T C(x).

The decision about acceptance of the step and update of the trust-regionxadsidased on the
ratio of actual decreaseed(sg; px), given by

(3.9) ared(si; pr) = Lk, Mis o) — L(Tk + Sk, Aet13 o)
and predicted decreageed(sy; pk), given by
(3.10) pred(sk; pr) = L(wk, Ak; pr) — (qk (k) + AN (Jisk + Ck) + prllJesk + Ckl?) ,
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6 M. HEINKENSCHLOSS AND L. N. VICENTE

whereg;, is defined in (3.2), wherd (y,u) = (Cy(y,u) | Cyu(y,u)) is the Jacobian of’, and
whereA\, = A\y1 — M. Since the tangential step lies in the null spacd pfwe haveJys}, =
Cy(zr)(sy)k + Culzr)(su)r = 0, and it can be easily seen that

pred(sg; pr) = qk(0) — Gr((su)r)
(3.11) + ¢ (0) — g (sh) — (AXe)T(Cy (1) (s5)r + Ch)
+ ok (ICklI> = 1Cy (1) ()1 + Ci?) -

Recall thag, ((su)x) = qr(s, + Wi(su)k) (see (3.7)).

Because of the requirements (3.4), (3.8) on the quasi—normal step and tangential step, respec-
tively, we have tha§, (0) — Gx((su)x) + pi ([ICkll* — ICy (xx) (s§)x + Ci|[?) > 0, providedz;,
does not satisfy the first—order necessary optimality conditions (3.1). To ensupedt@t . ; pr.) IS
sufficiently positive the penalty parameteris increased if necessary. In fact, the penalty parameter
pr. Will be chosen so that

pred(si pi) = B (IChl12 = 1€y () (55 + Cil?)

(see step 2.6 in algorithm 3.1 below).

3.2. Statement of the algorithm. This leads to the following class of trust-region SQP algo-
rithms. They are the same as the trust-region SQP algorithms in [10], but are adapted to our problem
context and to our notation.

ALGORITHM 3.1 (Trust-Region SQP Algorithms).
1 Choosery andAq > 0, and calculate. Setp_1 > 1 ande;,; > 0. Choosevy, 1, Apmin,
Anaz, andp suchthad < a1,m <1, 0 < Apin < Ajae, andp > 0.

2 Fork=0,1,2,...do
2.1 Computes}, satisfying (3.13) and (3.4).
2.2 ComputeV,[ Vg (s}).
2.3 If | Cyll + [[WEVar(sh)|| < etor, Stop and returm, as an approximate solution for

problem (1.1).

2.4 Computes,, ), satisfying (3.8).
2.5 Compute\,; and setA g = A1 — Ak
2.6 Update the penalty parameter.

It pred(sii pi—1) > 25 ([|ChlI = [ICy (wx) ()i + C|? ), then set

Pk = Pk—1-

Otherwise set

o= 2B+ Eln) — e(0) + au(6D) + A Cyon) 53 + )
¢ ICII® —1ICy () ()1 + Cill® '

2.7 Computds!))y = —Cy(2x) ' Cu(2x)(s4)r (if not already done in step 2.4).
2.8 Ifared(sy; pr)/pred(sy, (su)x; pr) < 1, Set

Apr = aymax {||sg[l, [|(su)rl}

and rejectsy,.
Otherwise accept, and chooseé\,; such that

maX{AmMm Ak} < Ak-{-l < Anaz-
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ANALYSIS OF INEXACT TRUST-REGION SQP ALGORITHMS 7

2.9 If s, was rejected set;1 = xp andA;+1 = \,. Otherwise sety1 = z + s and
let \;.+1 be the vector computed in step 2.5.

REMARK 3.2. In reduced SQP methods one uses

0 0
Hy = =)
b <0Hk)

Inthis case Hy s} = 0 and steps 2.1 and 2.7 can be merged into a step 2.4a. Instead of executing
steps 2.1 and 2.7, one computes in step 2.4a an approximate solution (s ), of

min ||Cy(zr)sy + C(zr)|l,

(3.12)
st syl < A

which satisfies (3.13)and (3.4). Inthiscase (s} ), in steps 2.6 and 2.8 isreplaced by (s, )

3.3. First—order global convergence of the algorithm.Dennis, EI-Alem, and Maciel [10]
have proved that the class of trust-region SQP algorithms 3.1 is globally convergent. Their con-
vergence theory requires the set of assumptions given below. For all iterativasassume that
Tk, Tk + sk € Q, wheref2 is an open subset dR™.

A.1 The functionsf, ¢;, i = 1,...,m are twice continuously differentiable functionsh
Herec;(x) represents thé-th component of(z).

A.2 The partial Jacobia@', () is nonsingular for all: € Q.

A.3 The functionsf, Vf, V2f, C, J, V3¢, i = 1,...,m, are bounded if2. The matrix
Cy(z)~t is uniformly bounded irf2.

A.4 The sequencefH;}, {Wy}, and{\;} are bounded.

Dennis, El-Alem, and Maciel [10] show that for a subsequence of the iterates the first—order
necessary optimality conditions (3.1) of problem (1.1) are satisfied in the limit.

THEOREM 3.3. Let assumptions A.1-A.4 hold. The sequences of iterates generated by the
trust-region SQP algorithms 3.1 satisfy

timint (W9 fill + 1G]} ) = 0.

We remark that inequality (3.4) and A.3 imply the existence 9f> 0, independent of, such
that

(3.13) skl < ral|Crll-

In fact, using||Cy (z)(s}), + Ck| < ||Ck| and the boundedness o€, (z)) '} we find that
Isill < ICy (z) 7" (I\Cy(xk)(SZ)erCkII + HCkH) < 2||Cy () MGl

In [10] the condition (3.13) is imposed as an additional condition on the quasi-normal step, because
more general quasi—normal steps are allowed.

4. Trust-region SQP methods with inexactnessNow we allow f andC' derivative informa-
tion, as well as linear system (1.2) solutions to be inexact. We assume, however, that the user is
able to adjust the level of inexactness. We will investigate how algorithm 3.1 has to be modified to
cope with this inexactness. Our aim is to devise conditions on the allowable level of inexactness that
meet three criteria. First, we want our conditions to be as weak as possible to admit inexpensive
problem information when the iteratégy,, ux) are far away from the solution. Secondly, we want
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8 M. HEINKENSCHLOSS AND L. N. VICENTE

our conditions to be comparable with the conditions on inexact function and gradient information
for unconstrained trust-region methods applied to the black—box formulation (2.1), which have been
reviewed in section 2. Thirdly, while our conditions on the allowable level of inexactness will be
general, we want them to be implementable. In particular, the conditions on the allowable level of
inexactness should not depend on derivative bounds, Lipschitz constants, and other quantities that
can not be computed in practice.

4.1. The main components of our composite—step trust—region algorithms with inexact
problem information.

4.1.1. The quasi—normal step.The assumption (3.4) on the quasi—hormal step turns out to be
rather weak and can be satisfied using several algorithms that fit into our inexactness framework.
This issue will be discussed in section 5.1. Notice also that assumption (3.4) is already expressed in
terms of the right hand sid€, and the residuaL'y(xk)s; + O}, of the linear systentL‘y(xk)s; =
—Ck.

4.1.2. Theu—component of the tangential step.The computation of the tangential step
allowing inexact information is more complicated. Among other things, we can not assume that
s}, is in the null-space of the linearized constraints. This condition, express€d-asiVys,, was
used repeatedly in sections 3.1.2 and 3.1.3. It will be very useful to discuss the computation of the
u—component and the computation of trRecomponent of the tangential step separately.

If exact derivative information and exact linearized system solves are available, ther the
component of the tangential step is the approximate solution of (3.7). Now, only approximations
of Wk,T(Hks,'; + V.{;) and Wk,THka will be available and we compute, as the approximate
solution of
“.1) min  Mmy(Sy) Lof Qi (sh) + G su + %SZWICTHk,Wksu

st ||sull2 < Ap.

In (4.1) the symbol™ over Wl H,,W,, indicates that the reduced Hessian approximation may be
inexact. What are the accuracy requirementg pand oanTHka?

If (yx,ur) were feasible, i.e., ilC(yr, ux) = 0, thens], = 0 (see (3.4)) andV f(ux) =
WL (Hgs? + Vi) (see (2.2)). In this case the theory of §53.4] for the reduced problem (2.1),
which was reviewed in section 2, suggests an accuracy requirement of the form

(4.2) Gk — Wi (Hys}, + Vali) || < &1l

with someg; € (0, 1) which is related to the parameters in the trust-region algorithm (c.f., (2.4)).
We need a slightly stronger condition, namely

(4.3) 19k — Wi (His}, + Valy) || < & min {[|gkll, Ak},

where¢; > 0. In (4.3) the constary; is not tied to the parameters in the trust—region algorithm, in
particular we do not neefy < 1, but the absolute error in the reduced gradient approximation must
be less thafgx || andAy.

In section 5.2 we show how (4.3) can be enforced in practice, if errors in the reduced gradient
are due to inexact linear system solves. There we will see that while (4.3) is slightly stronger than
(4.2), the fact that we can give up the restrictfgn< 1 makes it preferable from an implementation

point of view.
REMARK 4.1.Imposing the inexactness condition
(4.4) Gk — VF (un)l| < & min {||Gil, Ax},
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ANALYSIS OF INEXACT TRUST-REGION SQP ALGORITHMS 9

where & > 0, instead of (2.4) also gives the standard lim inf global convergence result for the
unconstrained problem (2.1). This may be seen using the proof in [27, Th. 4.10] and applying (4.4)
in the estimate for [+, (sx) — V f(zx) T sx| on page 278 of [ 27].

The approximate reduced Hessian has to satisfy

(4.5) (52)TWE HWi(s.)k < &l (s2)x ]2

for some¢, > 0 independent of.. If W," H, W), is evaluated exactly, then (4.5) is implied by
assumption A.4.

The approximate solutiofs., ), of (4.1) computed in step 2.4 of algorithm 3.1 must provide a
fraction of Cauchy decrease on this approximate modgli.e.,

(4.6) 1 (0) = ie(su)i) > oGl min { oGl ol },

where, as in (3.8)4, k5, andkg are positive constants independenkofOne method to actually
computes,, satisfying (4.6) will be discussed in section 5.3.

4.1.3. Measuring progress, updating the penalty parameter, and evaluating the trial step.
The reformulation (3.11) of the predicted decrepsel(s ; p) defined in (3.10) is only valid if,
is in the null-space of the linearized constraints. If this is not the case, then

pred(si; o) = Gk(0) — qr((su)k)
+ qr(0) — qr(sy) — (AM) T (Cy (xr) (s5)k + Ch)
+ ok (ICk 11> = 1Cy (1) ()1 + Ci]?)
—(AX)" () — PkH?“kHQ—?Pk (ri)™ (Cy (i) (s))i + Ci)
where

(4.7) Tk = Cylar)(sy)k + Cu(zr)(5u)k-

Moreover, the reduced quadratic modgldefined in (3.2) is now replaced by, defined in (4.1).
We define

pred(sy, (su)ks pr) = Mk(0) — My((su)k) + (0) — qr(sy)
—(AX)T(Cy () (s3)k + Cr) + pr (ICN1* = |Cy (zx) (s)k + Ckl?)

(4.8)
and

(4.9)  rpred(r; pr) = —(AX)T (1) = pellrkl® = 20k (rE) T (Cy (k) (s))k + Ci) -
We now view
pred (s, (Su)k; pr) + rpred(ri; pr)

as the quadratic model of the Lagrangian.

This predicted reductiopred (s}, (s.)x; pr) depends only or}, and(s, ), and can be readily
computed. In fact, the quantities  (0), mx((su)x) andCy(zx)(sy)x + Cj, are typically already
computed during the computation of thecomponent of the tangential step and the computation of
the quasi—normal step, respectively.

Because of the requirements (3.4) and (4.6) band(s., ), respectively, we have that, (0) —
M ((su)i)+ ok (ICKI1> = [|Cy (2)(s5)k + Ckl|?) > 0, provided(yy, ux) does not satisfy the first—
order necessary optimality conditions (3.1). We update the penalty pargmetémecessary, to
ensure sufficient positivity gfred (s}, (s.)x; px). See step i2.6 in algorithm 4.3 below.

The evaluation of the ste, = s} + s}, (we will discuss the computation (lﬁ/)k in a moment)
will be based on the ratisred(sy; px) /pred(sy, (Su)k; pr)-
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10 M. HEINKENSCHLOSS AND L. N. VICENTE

4.1.4. They—component of the tangential step.As we have noted in the previous section, the
quadratic model of the Lagrangiarised (s}, (su)x; px)+rpred(rt; pi ). However, step evaluations
are performed based qired(s},, (s.)x; px) Only. To ensure that the inexactness in the tangential
step(s;)k does not dominate this quadratic model, we require that

(4.10) [rpred(ry,; pi)| < nopred (s}, (su)w; i),

wheren, € (0,1 — ) is a given constant ang is the parameter in step 2.8 of the trust-region
algorithm, and that

(4.11) 7]l < &AR](su)kll

for some constarg; > 0 independent of. If we estimaterpred(rs; pr)| < prlrL 1> + (| AX]| +
20| Cy (1) (s3)k + Ck ) lI7).|| and insert this upper bound into (4.10), we see that inequality (4.10)
is implied by

(4.12) 7l < —o + /o + mopred(s. (su)i: px) /s

whereo = ||Cy(wx)(s})x + Ckl| + [[AXe[l/(2p%)- Inequalities (4.10) and (4.11) are satisfied for
the exact solution Oﬁ'y(mk)(s;)k = —Cyu(xr)(s4)k- The quantityf|r} || is the residual accuracy of
an inexact solution;, of C\ (xx)s}, = —Cy (1) (su)k- Sincesy, (su)x andpred (s}, (su)x; px) are
known, a steffs} ) with (4.10) and (4.11) can be computed.

REMARK 4.2. i. Condition (4.10)is motivated by (2.5). We need to control the accuracy of
pred (s, (su)r; pr) + rpred(ry; pi), Whereas (2.5) controls the accuracy of the actual reduction.
However, the effects of both conditions on the ratio of actual and predicted reduction are similar.

ii. Noticethat (s!,)x = —Cy(xx) ' Culxr)(su)r + Cy(xr) '}, and that (4.11)implies

(4.13) [Cy (k) il < &g

for some £, > 0. In other words, it implies that the norm of the residual (tangential) step
Cy(zr)~tr} is bounded by a constant time the trust—region radius. If we view C\,(z) '} asa
second (tangential) step, or as a spacer (tangential) step, we then identify (4.13)as a condition that
has already been imposed on steps of such typesin the context of global convergence of trust—region
algorithms for unconstrained optimization [5, § 10.4], [6].

We note that the amount of positivity isred(s}, (su)x; pr) iS determined by the reductions
ik (0) — M ((su)r) @nd||Ck || = [|Cy (zx) (s )i + C [|*. Thus we can allow the more inaccuracy in
the (s; ). computation, which typically translates into less expenéig, computation, the larger
the linearized feasibility gaifiC' || — || Cyy (1) (s} )« + Ci ||* achieved by the quasi-normal seml
the larger the optimality gaif;(0) — m((s.)x) achieved by the—component of the tangential
step. In particular, even ifCy[|* — [|Cy(zx)(s3)k + Ci|? is small, butiig (0) — mik((su)k) is
large (which is likely the case at a point, = (yx,uy) that is almost feasible, but away from
being optimal) the accuracy requirement @1} ) is rather weak. Our criterion also seems to be
closely aligned with the SQP philosophy which allows to trade gains in feasibility for gains in
optimality. Another important point worth noting is that inaccuraq(:’r@),C does not enter the
penalty parameter update. If it would, the penalty parameter might increase faster. Since too large
penalty parameteys, can slow down the convergence of SQP methods this is another benefit of our
accuracy requirement.

Our initial and somewhat straight forward approach [20, 36] to deal with inaccuracy did not
use the splipred(s}, (su)x; px) + rpred(r}; p). Rather, the predicted decrease was defined by
(3.10). After determination of} satisfying (3.4) we computed a tangential step that, among other
conditions, satisfied

(4.14) ICkII* = 1l Tk (5% + s§) + Cull* < & (1CkI1> = 1Cy (zx) (s})k + Ck[1?)
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with & € (0,1). Thus accuracy ofs!,),. depended only on the linearized feasibility gty ||* —
Cy (k) (s5)k + Ci||* achieved by the quasi—normal step. Moreover, when

Pk—1
2

pred(si; pr-1) < Pt (ICulI? = [1Je(s; + s5) + Cull?),

wherepred(sk; pi) is given by (3.10), we used the update

2 (=1 (0) + au(si) + AN (Jusi + Ci))

4.15 = =+ p.
(4.15) Pk 1CI? — [7c(sy + 54) + CalP 2

The condition (4.14) often lead to very stringent accuracy requirements fg§. and the update

(4.15) often lead to large increases in the penalty parameter, especially when the current iter-
ate (v, ui) happened to be almost feasible. The approach presented in this paper represents the
quadratic model of the Lagrangian ps:d (s, (su)x; pr) + rpred(ry; pr), separates the computa-

tion of theu— and they—component of the tangential step, bases the accuracy requiren(er‘g)qn

on feasibilityand optimality gains, and bases the penalty parameter update on quantities that are not
contaminated by inaccuracies(ist, ) ..

4.1.5. Computation of the Lagrange multiplier estimate. Finally, the computation of ;1
in step 2.5 of the exact trust-region SQP algorithms 3.1 is likely to involve inexact calculations.
However, as we have seen in theorem 3.3, global convergence to a stationary point requires only
boundedness from the sequence of Lagrange multip{iexg. This requirement is not only fairly
mild from a theoretical point of view, but under assumptions A1-A4 also easy to impose computa-
tionally even when inexactness is present.

4.2. Statement of the algorithm. The inexact trust-region SQP algorithms are defined simi-
larly as their exact counter-part, algorithm 3.1, but with steps 2.1 to 2.8 modified to accommodate
the inexact calculations discussed above.

ALGORITHM 4.3 (Inexact Trust-Region SQP Algorithms).
1 The same initializations as in step 1 of algorithm 3.1.
2 Fork=0,1,2,...do
i2.1 Computes}, satisfying (3.13) and (3.4).
i2.2 Compute an approximati@n, to W' Vg, (s}) satisfying (4.3).
i2.3 If ||Ckll + gkl < €to1, Stop and returmy, = (yi, ux) as an approximate solution for
problem (1.1).
i2.4 Computgs,, ), satisfying (4.6).
i2.5 Compute\,1 and setA , = g1 — Ag.
i2.6 Update the penalty parameter.
It pred(s, (su)ii pr—1) = 25 (ICK|12 = 1y (r) ()5 + Ci12), then set

Pk = Pk—1-
Otherwise set

o= 2 (= (0) + 7 ((su)r) — qr(0) + g (s}) + ANT(Cy (k) ()i + Ci)) s

CEll? = 1Cy (k) (s)k + Crll?
i2.7 Computg(s}, )« So that the residual vectoj, satisfies (4.10) and (4.11).
i2.8 Computepred(s}, (su)x; px) using (4.8).

If ared(sk; pr)/pred(sh, (su)r; px) < m, Set

Apr = agmax {||sg|l, [|(su)rl}
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12 M. HEINKENSCHLOSS AND L. N. VICENTE

and rejectsy.
Otherwise accept, and chooseé\,.; such that

max{Apin, Ar} < Apg1 < Apnaa-

i2.9 The same step and multiplier updates as in step 2.9 of algorithm 3.1.

REMARK 4.4. In reduced SQP methods where H s}, = 0 the algorithm can be slightly reor-
ganized to save one linear system solve with system matrix (C ). See also Remark 3.2 Steps 2.1
and 2.7 can be merged into a step 2.4a. Instead of executing steps 2.1 and 2.7, one computesin step
2.4a an approximate solution (s, ), of (3.12)which satisfies (3.13)and (3.4) In thiscase (s}) is
replaced by (s,). in the remaining steps of the algorithmand (s} ) = 0.

4.3. First—order global convergence of the algorithm.The global convergence property of
the inexact trust-region SQP algorithms 3.1 is stated in the following theorem.

THEOREM 4.5. Let assumptions A.1-A.4 hold. The sequences of iterates generated by the
inexact trust-region SQP algorithms 4.3 satisfy

(4.16) liminf (|Ig] + il ) = 0.
k—oo
Furthermore, we have

(4.17) timinf (W fi + Cil) = 0.

Proof. The proof of (4.16) follows the convergence analysis given in [10] with the predicted
decrease used there always replacegiyl(s}, (s.)x; o) as defined in (4.8). Only a very few
steps in the convergence analysis change and we will review them in detail.

The first modification concerns the relationship between the size of the gtapd the trust—
region radius\ ;. The convergence analysis requires that

skl < K7l
and, if sy, is rejected, that
Agt1 > Ksl|skl-

In our inexact trust—-region SQP algorithms the first inequality follows from the trust-region con-
straints in (3.3), (4.1), and from (4.11) and assumption A.3. The second inequality is a consequence
of the update of the trust—region radius in i2.8.

The second modification is in the estimates of the difference between actual decrease and pre-
dicted decrease. Sinagred(r}; px) is different from zero, the upper bounds on the difference
between actual and predicted decreases given in [10, L. 7.4, 7.5] are now different. We will be able
to show

lared(sy; pr) — pred(sy, (su)r; px) — rpred(ry; pr)|

(4.18) ; :
< Ko Agllskll + Kro0pkllskll® + K11pkll skl Crll

instead of [10, L. 7.4], and
(4.19) lared(sy; px) — pred(sh, (su)i; pr) — rpred(rk; pr)| < Ki2pkk| sk

instead of [10, L. 7.5].
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The estimates (4.18) and (4.19) can be verified as follows. Using the definitions (4.8) and (4.9)
we can see that

pred(s}, (su)k; pr) + rpred(ry; pr)
v 1 I n 1 n n
= —g,{(su)k - §(Su)£WEHka(3u)k - szgsk - §3kTHk3k
—A)\g (Jksk + Ck) + Pk (||Ck||2 - ||Jksk + Ck||2) .

With the definition (3.9) of the actual decrease, the previous identityVagdd Hy. s}, + V. l5) =
W'V (sh) we obtain

ared(sk; pr) — (pred (s, (su)x; pr) + rpred(ry;: pr))
= Uk, M) + Pl Crll? = L(@hs1s Aer1) — prl|Crpa |
—pred (s}, (su)k; pr) — rpred(ry; pr)
= U@k, Ak) = L(Trt1, M) + L Tpp1, M) = L(Tht1, A1)
+(Hish + Val) " Wi(su)k + 3 ()i W HWi(su)k + Valf sh + 357 Hs)
+@ — WEVar(s) (sl + 25 FWEHWi(su)r — 3 (s2)F Wi HiWi(su)i
FAN, (Jisk + Cr) = pro([Crsal® = ([ Tesi + Cill?)
= —l(Tpy1, \i) + qu(Sk) — au(Sk) + T ((su)r)
+@ — WEVar(s)) (sl + H(5)FWEHWi(su)i — 5 (s2)F Wi HiWi(su)i
(4.20) +AXN (—Cryr + Jisk + Cr) — pi (ICrgr|* = [ Jksi + C|1?) -
Using Taylor expansion and the definition (3.2}afgives

(4.21) | = Clarr1, M) + ar(si)| < S Hy = V30 ke + tise, M) || [|sel®
with somet;, € (0,1). Using the definitions (3.2) and (3.7) of. andg;, respectively, (3.6), and
(4.7) we find that

| = ar(sk) + @r((su)r)]
< | Hsh = Vaol(n, M)l sk = Wi(sa)ell + 51HE I skl + 5 1WEHe W [l ()5l
(4.22) || Hish — Vol )| 1Cy (@)~ 7kl + 31 Hill skl + 51IW HeWall | (su)x .
With
skl < NIk = Wa(su)ell + IWa(su)ell < 1Cy (@) Mkl + Wl | (su)
and (4.11), equation (4.22) implies
| = ar(sk) + @k ((su)r)]
< &l Hish — Vol (@, Mol [1Cy () M Axll (50
+5l Hill (E3Cy (1) IPAZ + 26 Wil Oy ()~ I Ak + [Will?) [I(su)ell®
(4.23)  +5lIWy HiWie] || (sl
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The inequalities (4.3) and (4.5) give
Gk — WEVQk(SZ))T(Su)k + L (s) FWEHWi(s:)k — 5 (s) EWEH Wi (.
4.24) < &A(su)el + 5 (52 + W H WDl ()1
Using Taylor expansion we obtam
AN; (=Crp1 + Jesi + Cr) = pi ([|Cria[I” = [ Trs + Cil1?)

m
= =3 (AXp)isi VZci(ap + tisk)sk
=1
m

_pk(z (z +tksk )TVQCi(l'k +tz8k)(5k)

(537 + ) (@ + thsn) (1) = (s)" (@) T @) (o) ).
wheret?,t3 € (0,1). Now we expana; (zy+t; s, ) arounde; (zx ). This expansion and assumptions
A.1-A.4 give
AN (=Chr + Jise + Cr) = pr. (ICki1 |” = | Jsk + Cil|?)
(4.25) < w1opkllsell® + w11 pk ||kl Crll-

If we insert (4.21)—(4.25) into (4.20) and use assumptions A.3, A.4 and (4.11), we arrive at the
desired estimate (4.18) for some positive constantsk,g, andx1;. Inequality (4.19) is then a
direct consequence of inequality (4.18) and the factghat 1.

We can now bound the difference between the actual and predicted decreases in the inexact
context. Combining (4.18) with (4.10), yields

lared(sk; pr) — pred(sy, (su)k; pi)l

< |ared(sk; px) — pred(sy, (su)x; pr) — rpred(ri; p)| + [rpred(rf; px)|
(4.26) < roAylskll + wropllsell® + m11pk skl 2 Crll + 1m0 [pred(sf, (su)is pr)] -
Similarly, combining (4.19) with (4.10), gives

(4.27)  |ared(sk; pr) — pred(s], (su)k; pr)| < K12pKAk|Sk]l + 10 [Pred(sy, (su)k; k)] -

The estimates (4.26) and (4.27) are used in the analysis only when rejection occurs in step i2.8.
If sy is rejected, we know that

ared(sg; pr)

0<1—m<
= pred (s}, (su)k; Pk)

_ 1‘ ,
which in our inexact context implies

ared(sy; pr) — pred(s}, (su)x; pr) — rpred(ri; pr)
pred (s, (su)k; pr)
Thus, when the estimate (4.19) is required, we obtain

1—-m < + 1o

K12k Ak sk
pred (s}, (su)k; pr)”
and the analysis in [10] remains unchanged except for the fact that a different lowerlbeung—

m € (0,1) is used. A similar bound is obtained when the estimate is given by (4.18).
The proof of (4.17) follows from the conjunction of (4.16) with (4.3) and (3.13).

0<1—770—771§
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5. Implementation in the presence of inexactnessln this section we discuss how the re-
quirements on the approximate reduced gradient and on the step components introduced in section
4 can be satisfied in practice. Our discussion leads to an implementable version of algorithm 4.3.
However, other implementations are possible. This section is not meant to be comprehensive. Rather
it is meant to support our claim made in the introduction and at the beginning of section 4 that our
conditions on the allowable level of inexactness are general but implementable.

5.1. Computation of the quasi—-normal component.The quasi—-normal componesi, is an
approximate solution of the trust-region subproblem (3.3) and it is required to satisfy the condition
(3.4).

If [|(sp)xll < Ay satisfies the fraction of Cauchy decrease condition

31Cy (@r) (s7)y + Crll?
(5.1) < min {3Cy(zx)s + Ci|* : s =—tCy(ai)" Ck, |Is]| < Ar},

then a result due to Powell [29, Th. 4] (see als®[b, 3], [27, L. 4.8]) shows that (3.4) is satisfied.
The papers [17], [32] describe two iterative methods based on Krylov subspaces for the computation
of steps(sy ). satisfying

112 = 1Cy () (5h)y + Call® = BICKIE = ICy (a) (55 + Cil1?),

where(sy)).. is the solution of (3.3). In particular these steps also satisfy (3.4). The iterative method
in [32] uses a restart technique that allows specification of storage limitations by the user, which is
important for large scale problems. The iterative methods in [17] and in [32] require the evaluation
of Cy(z)v andCy ()T u for givenv andu.

For some applications, the evaluation of matrix—vector proddigt&:;)” v is more expensive
than the evaluation of’, (xx)v, and therefore it may be more efficient to use methods that avoid
the use ofC, (z)"v. In this case one can apply nonsymmetric Krylov subspace methods based
on minimum residual approximations, such as GMRERQ]. In the context of nonlinear system
solving the use of such methods is described e.g. in [2]. In that context, trust—region subproblems
of the type (3.3) also have to be solved and the solvers in [2] can be applied in our situation as well.
If GMRES(]) is used to project the quasi-normal step problem (3.3) onté-dlienensional Krylov
subspace and if

(5:2) ST ()™ + Culan)) G > BICH?

holds with > 0, then (3.4) is satisfied. The condition (5.2) is implied by the positive definiteness
of the symmetric part o€, (1), a condition also important for the convergence of honsymmetric
Krylov subspace methods. A proof of this result and more details concerning the use of these
methods can be found in [36].

Finally, we can also use the following simple procedure. Compptsuch that|C, (x)s}, +
Ckll < ¢J|Ck||, where¢ < 1, and then scale this step back into the trust region, i.e., set

o 1 if ||37] < Ay,
Szz(gksk)wheregk:{ B

0 A/l otherwise.

The steps], also satisfies (3.4) (see [36]).
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5.2. Computation of an approximate reduced gradient. We show how (4.3) can be en-
forced, if errors in the reduced gradient are due to inexact linear system solves.

Ifwe setd = Hy s, + V., and denote thg— andu—component ofl by d,, andd,,, respectively,
then Wl (Hy.s}, + V.l) = —(C)F(Cy). "dy + d,. We suppose that the inexactness in the
computation oﬂd/,f(Hksg + V.!;) is due to the use of an iterative solver for the linear system
(Cy)t = = —d,. More precisely, we assume that

(5.3) Gk = (Cu)}Z + du,
wherez satisfies
(5.4) (CHEz=—d, —e

with a residual erroe. The following result is easy to prove.
LEMMA 5.1.1f g; isgiven by (5.3), (5.4)and if

(5.5) llell < min{e[|(Cu)k 2 + dull, 22k},

where c1, c2 > 0 aregiven, then (4.3)is satisfied with &; = max{e1, c2}[|(C.)F (Cy) 7.
Proof. Equations (5.3), (5.4) implyy, = —(C.)¥ (Cy); " (dy +€) + d,, and

[ = Wil (Hsh + Vali) | = [1(Cu)i (Cy)i Tell < 1(Cu)E (Cy)i |l lell-
Hence, using (5.3), (5.5),
s = Wi (His}, + Vali) | < [(Cu)i (Cy) " || min{e |G, c2Ar}

which yields the desired estimate.

At first sight the inequality (5.5) seems impractical since ho#ind (C',)} Z + d,, depend on
z. However, (5.5) can be enforced if an iterative method for the soluti¢t’gfi{ = = —d, is used
and matrix—vector products of the forf@', )} v for a givenv can be easily computed. The latter
is the case for many control problems. In fact,4ét be thejth iterate in the solution method for
(Cy)Ez = —dy and lete¥) = —d, — (C,)¥20) be the corresponding residual. ({f',)% 2(9) can
be easily computed, then we can monit¢f',)F 2 + d, || and we can truncate the iterative linear
system solver when

e < min{er [|(Cu)F 29) + du|, c2Ar}.

Note that the truncation criterion (5.5) for the iterative linear system solver is only applicable,
because; > 0in (4.3) is not restricted. If it were required thgt € (0, 1), say, then we would
need an estimate foi(C.,)¥ (C,); " ||. Thus, while (4.3) is slightly stronger than (4.2), the fact that
we can give up the restrictigh < 1 makes it preferable from an implementation point of view.

5.3. Computation of theu—component of the tangential componentAn approximate solu-
tion s,, of (4.1) that satisfies (4.6) can be computed, e.g., using the conjugate gradient (cg) method
with a modification as suggested by Steihaug [33] and Toint [34]. Here the cg method with starting
values, = 0 is applied to the minimization a%.;,. The conjugate gradient method is stopped if an
approximate minimum of the quadratic modgel. is reached, if negative curvature is detected, or
if the iterates leave the trust-region bound. The first iterate in the Steihaug—Toint cg method is the
Cauchy-step for thé:;, and therefore (4.6) is satisfied for the first iterate of the Steihaug—Toint cg
method. IfW,] H, W), can be applied exactly, which is the case in a reduced SQP method where
WIHW, = H,, then the conjugate gradient method ensuresithatdecreases monotonically
and (4.6) remains satisfied for all Steihaug—Toint cg iteratdd/ JfH, W}, is applied inexactly, then
one has to compare the function valdes at the first Steihaug—Toint cg iteraté and at the final
Steihaug-Toint cg iterate/ . If fmx(s]) < My (sl), then(s,), = sf; otherwise(s, ) = st.

ur
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5.4. Computation of the y—component of the tangential component.In section 4.1.4 we
have already shown that (4.10), (4.11) are satisfieejf,. satisfies’, (zx)s;, = —Cu (1) (su)r+7},
with residual

66 gl < min{fsmn(sum,—w W+nopred<sz7<su>k;pk>/pk},

whereo = ||Cy (z)(s})x + Ckll + [[AM||/(2pk). Note that all quantities on the right hand side of
(5.6) are known by the timgs? ). needs to be computed.

6. Conclusions.In this paper we have extended the design of a class of composite—step trust—
region SQP algorithms and their convergence theory to allow the use of inexact first—order derivative
information or the use of inexact linearized constraint equation solves. The challenge was the for-
mulation of accuracy requirements that are sufficient to guarantee global convergence to a point
satisfying the first—order optimality conditions, but at the same time can be implemented in a practi-
cal algorithm and are not overly stringent. Our accuracy requirements are based on the structure of
the composite—step trust-region SQP algorithms and they follow the SQP philosophy which allows
to trade gains in feasibility for gains in optimality. The main motivation of this paper is the control
of inexactness arising from iterative system solves (1.2) in trust—region SQP methods. This is im-
portant, e.g., for the solution of discretized optimal control problems governed by partial differential
equations. However, our assumptions on the inexactness are not based on this particular source of
inexactness and are applicable more broadly.

We focused on a specific class of problems (1.1) and on a limited class of algorithms to enhance
the clarity of our presentation. An extension of our analysis of the influence of inexact first—order
derivative information or the use of inexact linearized constraint equation solves to a broader range of
problems and global SQP algorithms is useful. Some extensions are rather straight forward, although
tedious. For example, we believe our analysis can be generalized to the affine—scaling interior—point
trust-region SQP algorithms in [11], which tackle problems (1.1) with additional simple bounds
onu. In fact, the predecessor [20] of this paper contains many of the technical details of such an
extension, although the assumptions on the inexactness made in [20] are stronger than those in this
paper.

Acknowledgments. The authors would like to thank the two anonymous referees and the asso-
ciate editor for their constructive comments on the first version of this paper, which lead to significant
improvements in the presentation.
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